Multi-Sensor Control for Multi-Object Bayes Filters
نویسندگان
چکیده
Sensor management in multi-object stochastic systems is a theoretically and computationally challenging problem. This paper presents a novel approach to the multi-target multi-sensor control problem within the partially observed Markov decision process (POMDP) framework. We model the multi-object state as a labeled multi-Bernoulli random finite set (RFS), and use the labeled multi-Bernoulli filter in conjunction with minimizing a task-driven control objective function: posterior expected error of cardinality and state (PEECS). A major contribution is a guided search for multi-dimensional optimization in the multi-sensor control command space, using coordinate descent method. In conjunction with the Generalized Covariance Intersection method for multi-sensor fusion, a fast multi-sensor algorithm is achieved. Numerical studies are presented in several scenarios where numerous controllable (mobile) sensors track multiple moving targets with different levels of observability. The results show that our method works significantly faster than the approach taken by a state of art method, with similar tracking errors.
منابع مشابه
Multi-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملMulti-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey
Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...
متن کاملSensor Control for Multi-Object Tracking Using Labeled Multi-Bernoullie Filter
The recently developed labeled multi-Bernoulli (LMB) filter uses better approximations in its update step, compared to the unlabeled multi-Bernoulli filters, and more importantly, it provides us with not only the estimates for the number of targets and their states, but also with labels for existing tracks. This paper presents a novel sensor-control method to be used for optimal multi-target tr...
متن کاملMulti-Target Joint Detection and Estimation Error Bound for the Sensor with Clutter and Missed Detection
The error bound is a typical measure of the limiting performance of all filters for the given sensor measurement setting. This is of practical importance in guiding the design and management of sensors to improve target tracking performance. Within the random finite set (RFS) framework, an error bound for joint detection and estimation (JDE) of multiple targets using a single sensor with clutte...
متن کاملStochastic models and methods for multi-object tracking
The problem of multiple-object tracking consists in the recursive estimation of the state of several targets by using the information coming from an observation process. The objective of this thesis is to study the spatial branching processes and the measure-valued systems arising in multi-object tracking. We focus on a class of filters called Probability Hypothesis Density (PHD) filters by fir...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 142 شماره
صفحات -
تاریخ انتشار 2018